- DROFENIK, M., KOLAR, D. & GOLIČ, L. (1979). To be published.
- EYSEL, W. (1970). Neues Jahrb. Mineral. Monatsh. 12, 534–547.
- FIGGIS, B. N., GERLOCH, M. & MASON, R. (1964). Acta Cryst. 17, 506-508.
- GOTSMANN, G. (1962). Dissertation TH Karlsruhe.
- JONES, J. B. (1968). Acta Cryst. B24, 355-358.
- LETZELTER, L. (1960). Dissertation TH Karlsruhe.
- MANSMANN, M. (1965). Z. Anorg. Allg. Chem. 339, 52-56.
- MONDAL, P. & JEFFERY, J. W. (1975). Acta Cryst. B31, 689-697.

- Nishi, F. & Takéuchi, Y. (1975). Acta Cryst. B31, 1169– 1173.
- Powell, H. M. & Wells, A. F. (1935). J. Chem. Soc. pp. 359-362.
- RIBBE, P. H. & GIBBS, G. V. (1967). Trans. Am. Geophys. Union, 48, 229.
- ROMERS, C., ROOYMANS, C. J. M. & DE GRAAFF, R. A. G. (1967). Acta Cryst. 22, 766–771.
- SCHOLDER, R. (1958). Angew. Chem. 70, 583-614.
- SHANNON, R. D. & PREWITT, C. T. (1969). Acta Cryst. B25, 925–946.
- SMITH, J. V. & BAILEY, S. W. (1963). Acta Cryst. 16, 801– 811.

Acta Cryst. (1979). B35, 1062-1067

Structure Cristalline du Disulfate d'Antimoine(III) $Sb_2(S_2O_7)_3$

PAR JACQUES DOUGLADE ET RENÉ MERCIER

Laboratoire de Chimie-Physique, Faculté des Sciences et des Techniques, Université de Franche-Comté, 25030 Besançon CEDEX, France

(Reçu le 13 septembre 1978, accepté le 8 février 1979)

Abstract

The title compound, $Sb_2(S_2O_7)_3$, forms crystals belonging to the triclinic system, space groupe P1. The unit cell has the following dimensions: a = 6.644 (1), b = 12.390 (3), c = 9.678 (4) Å, $\alpha = 92.69$ (2), $\beta =$ 82.29 (2), $\gamma = 96.88$ (2)°, V = 783.4 Å³, $Z = 2, D_m =$ 3.25 ± 0.05 , $D_x = 3.27$ Mg m⁻³. The structure determination was based on 4587 independent reflexions. Refinement of parameters of all atoms by blockdiagonal least-squares methods with anisotropic temperature factors gave an unweighted R factor of 0.032. There are three S_2O_7 groups with mean bond lengths: S-O (bridge) = 1.618 Å, S<O₂ (terminal) = 1.423 Å, $S-O\cdots Sb = 1.48$ Å, the average value of the S-O-Sangle being 121.4° . The two ends of the third S₂O₇ group are linked to the same Sb (thus a bidentate ligand) to form a hexagonal ring. The coordination polyhedra of Sb atoms are distorted trigonal bipyramids, SbO_4E (E being the lone pair of Sb), with a weak axial fourth Sb–O $(2 \cdot 32 - 2 \cdot 42 \text{ Å})$.

Introduction

La détermination de la structure de $Sb_2(S_2O_7)_3$ fait suite à diverses études de la coordination de Sb^{111} par des atomes d'oxygène dans des sulfates: $Sb_2O(SO_4)_2$ (Mercier, Douglade & Théobald, 1975); $Sb_2(SO_4)_3$

0567-7408/79/051062-06\$01.00

(Mercier, Douglade & Bernard, 1976); $Sb_2(OH)_2$ -(SO_4)₂.2H₂O (Douglade, Mercier & Vivier, 1978); $Sb_6O_7(SO_4)_2$ (Bovin, 1976), dont l'objet est de préciser l'influence de la paire d'électrons non liée de Sb¹¹¹.

A la différence du groupe P_2O_7 , la géométrie du groupe pyrosulfate S_2O_7 est mal connue, puisqu'un seul disulfate $K_2S_2O_7$ (Lynton & Truter, 1960) a vu sa structure déterminée ainsi que deux hydrogénodisulfates: $Se_4(HS_2O_7)_2$ (Brown, Crump & Gillespie, 1971); $NO_2(HS_2O_7)$ (Steeman & MacGillavry, 1954). La connaissance précise de la configuration de ce groupement devrait permettre de vérifier les calculs de Brown (1973) sur les angles de liaison et d'affiner les calculs de champs de forces relatifs à ce groupe.

Signalons qu'aucun composé répondant à cette formule n'est signalé dans la littérature.

Résultats expérimentaux

La dissolution à 393 K de Sb₂O₃ (25 g l⁻¹) dans un oléum riche en SO₃ (~65% SO₃), en tube scellé conduit, après refoidissement à 293 K, à la formation de cristaux incolores pouvant atteindre quelques millimètres. Leur manipulation, en atmosphère anhydre, permet de les isoler en tubes de Lindemann scellés ensuite pour leur étude radiocristallographique. Les dosages de Sb³⁺ (par BrO₃⁻) et de SO₄²⁻ (par précipitation de BaSO₄), après mise en solution dans HCl 3 *M*, correspondent à la formule dualistique:

© 1979 International Union of Crystallography

.

 Sb_2O_3 . 6SO₃ équivalente à $Sb_2(S_2O_7)_3$. Les enregistrements photographiques en chambres de Weissenberg et de Buerger ont permis de déterminer les paramètres de la maille dans le système triclinique. La densité, mesurée par pycnométrie dans du n-tétradécane, est voisine de 3,25 Mg m⁻³ ce qui implique la présence de deux unités formulaires par maille.

Les mesures d'intensité ont été réalisées sur le diffractomètre automatique Enraf-Nonius CAD-4 du Centre de Diffractométrie Automatique de Lyon à partir de la radiation $K\alpha$ ($\lambda = 0,7107$ Å) émise par un tube à anticathode de molybdène (monochromateur à lame de graphite). Les valeurs des paramètres cristallographiques ont été affinées, sur le diffractomètre, à partir de 25 réflexions indépendantes ($10^\circ < \theta < 20^\circ$) sur un cristal de dimensions comprises entre 0,2 et 0,25 mm ($\mu = 4.4 \text{ mm}^{-1}$). Les intensités ont ensuite été collectées dans une demi-sphère de l'espace réciproque $(h > 0, \theta < 30^{\circ})$ avec un défilement: $\omega - 2\theta$. Sur un nombre total de 5745 réflexions analysées, seules ont été retenues 4587 réflexions indépendantes dont l'intensité satisfait au test: $I > 2.5\sigma(I)$. L'absorption a été négligée ($\mu R \sim 0.5$) et seules les corrections de Lorentz et de polarisation ont été effectuées. Le spectre de diffraction X de poudre indexé à partir des paramètres figure dans le Tableau 1.

Détermination de la structure

La déconvolution de la synthèse de Patterson tridimensionnelle, permet de retenir quatre atomes lourds

Tableau 1. Indexation du spectre de diffraction X de poudre de Sb₂(S₂O₂)₃

Methode: Debye-Scherrer - chambre cylindrique Siemens: diamètre 114,6 mm. Ravonnement: Cu Ka ($\lambda = 1,542$ Å). La mesure de l'intensité des raies a été effectuée à l'aide d'un microdensitomètre Joyce-Loebl, la raie 022 la plus intense étant prise comme référence d'intensité $I_0 = 100$.

			1/				1/
h k l	$d_o\left(\dot{\mathrm{A}}\right)$	$d_{c}(\dot{A})$	022	h k l	$d_o\left({\rm \dot{A}} \right)$	d _c (Å) I	022
0 I Ī	7,70	7,677	4	022	3,725	3,724	38
011	7,45	7,447	3	Ī 1 2	3,535	3,535	15
020	6,15	6,147	42	Ī 3 1	3,317	3,315	21
101	5,76	5,762	48	200	3,272	3,270	38
111	5,47	5,475	20	201	2 2 2 0	(3,225	7
101)	5.10	(5,104	6	2 Ī 1)	3,220	3,219	/
021	5,10	5,102	0	03Ž	3,163	3,164	30
111	4,99	4,992	53	013	3,114	3,116	14
Ī 1 1	4,84	4,840	10	040)	2 0 7 2	(3,074	25
120	4,76	4,760	13	210)	3,075	3,074	35
012	4,52	4,514	23	220)		(3,035	
012	4,42	4,419	4	103	3,031	{ 3,030	92
120	4,24	4,243	3	211)		3,209	
Ī 2 1	4,08	4,075	64	Ž 1 1	2,962	2,960	20
121	3,975	3,973	36	113)		(2,887	
022	3,835	3,839	100	2 1 2 }	2,885	{ 2,883	77
031	3,810	3,812	21	202)		12,891	
121	3,790	3,793	8				

(Sb) dans la maille, qui laisse aparaître la présence possible d'un centre de symétre faisant correspondre deux à deux ces atomes. Un affinement des coordonnées de deux atomes d'antimoine en position générale dans le groupe centrosymétrique $P\bar{1}$ conduit à un indice résiduel R voisin de 0.4. Une synthèse de Fourier consécutive à ce calcul laisse apparaître six pics dans la demi-maille d'intensités voisines du tiers de celles des pics relatifs aux atomes d'antimoine. Les coordonnées de six atomes de soufre introduits dans ces positions ont été affinées avec abaissement du facteur $R \ge 0.26$.

L'examen de synthèses de Fourier-différence permet de dégager rapidement la position des 21 atomes d'oxygène entourant les atomes de soufre. L'affinement de ces positions avec facteur d'agitation thermique isotrope conduit à R = 0.057. L'introduction de facteurs thermiques anisotropes du type: $T = \exp$ $\begin{bmatrix} -(\beta_{11} h^2 + \beta_{22} \dot{k}^2 + \beta_{33} l^2 + \beta_{12} hk + \beta_{13} hl + \beta_{23} kl \end{bmatrix}$ pour tous les atomes, par la méthode des blocs diagonaux, permet d'abaisser le facteur résiduel non pondéré $R \ge 0.032^* (R = \sum |F_o - |F_c||/F_o).$

^{*} Les listes des facteurs de structure et des facteurs d'agitation thermique anisotrope ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 34270: 48 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Tableau 2.	Coordonnées rela	atives (×10	*) et écarts-typ	e
des a	atomes d'antimoin	ie, soufre et	oxygène	

	x	У	Z	$B_{\text{ég}}$ (Å ²)
Sb(1)	-2775 (1)	2113(1)	-917 (1)	1,23
Sb(2)	2610(1)	2430(1)	4139 (1)	1,00
S(1)	378 (2)	456(1)	-2744 (1)	0,80
S(2)	3905 (2)	-421 (1)	-1990 (1)	0,75
S(3)	1605 (2)	2578 (1)	640(1)	0,79
S(4)	4148 (2)	4228 (1)	1788 (1)	0,96
S(5)	694 (2)	4067(1)	6872 (1)	0,81
S(6)	-2135(2)	2891 (1)	5281 (1)	0,82
O(1)	-846 (6)	983 (3)	-1551 (4)	1,53
O(2)	1859 (6)	1202 (3)	-3494 (4)	1,79
O(3)	-847 (7)	-292 (3)	-3509 (4)	1,75
O(4)	1520 (5)	-241 (3)	-1769 (4)	1,52
O(5)	5059 (6)	632 (3)	-2003 (4)	1,54
O(6)	4250 (8)	-1076 (4)	-3218 (5)	2,07
O(7)	3998 (6)	-983 (3)	-707 (4)	1,52
O(8)	-598 (5)	2517 (3)	586 (4)	1,28
O(9)	2014 (6)	2032 (3)	1856 (4)	1,28
O(10)	2808 (6)	2285 (3)	-618 (4)	1,45
O(11)	2163 (5)	3853 (3)	956 (4)	1,19
O(12)	4440 (7)	5368 (3)	1652 (4)	1,69
O(13)	5696 (6)	3568 (3)	1226 (4)	1,71
O(14)	3279 (6)	3944 (3)	3260 (4)	1,18
O(15)	2219 (6)	3485 (3)	5992 (4)	1,46
O(16)	-134 (6)	3469 (3)	8102 (4)	1,60
O(17)	1265 (7)	5185 (3)	7076 (4)	1,86
O(18)	-1197 (5)	4028 (3)	5919 (4)	1,11
O(19)	-2476 (7)	2117 (3)	6361 (4)	1,74
O(20)	-3859 (6)	3171 (3)	4718 (4)	1,67
O(21)	-521 (5)	2607 (3)	4154 (4)	1,51

1064

Le nombre de paramètres affinés est ainsi de 262 pour 4587 réflexions; les variations des paramètres, lors du dernier cycle, sont inférieures au dixième des écartstype correspondants. Les coordonnées atomiques figurent dans le Tableau 2. Les facteurs de diffusion atomique utilisés sont ceux des atomes neutres Sb, S et O figurant dans International Tables for X-ray Crystallography (1974).

Description de la structure

La projection de la structure (Fig. 1) sur le plan xOzmontre la présence de trois groupements S₂O₇ différents formés chacun par deux tétraèdres SO₄ ayant un sommet commun: S_2O_7 (I) [S(1),S(2),O(1-7)] relie les atomes Sb(1) et Sb(1ⁱ); S,O, (II) [S(3),S(4),O(8-14)]fait le pont entre Sb(1) et Sb(2) alors que S_2O_7 (III) [S(5),S(6),O(15-21)] a un rôle particulier puisque deux atomes d'oxygène de chaque extrémité pontent le même atome Sb(2) de façon à former un cycle hexagonal. Si l'on considère les trois liaisons courtes Sb-O (d < 2,2Å), chaque atome d'antimoine est au sommet d'une pyramide SbO₃, chacun des atomes d'oxygène faisant partie d'un groupe terminal SO₃ des groupements S_2O_7 . L'examen des distances S-O du Tableau 3 permet bien de distinguer trois types d'oxygène: les oxygènes des ponts S–O–S ou O(b), les oxygènes terminaux O(t) formant des groupes 'SO, libres' et les oxygènes terminaux $O(t \cdots Sb)$ reliés assez fortement à l'atome d'antimoine.

Tableau 3. Distances interatomiques (Å) et angles (°) dans les groupements S_2O_7

Les écarts-type sont voisins de 0,005 Å pour les distances S-O et de 0,008 Å pour les distances O-O. Les écarts-type relatifs aux angles O-S-O et S-O-S sont inférieures à 0,3°.

S ₂ O ₇ (I)		S ₂ O ₇ (II)		S_2O_7 (III)		Observations
S(1) = O(1) S(1) = O(2)	1,491 1,416	S(3) = O(8) S(3) = O(9)	1,465	S(5) = O(15) S(5) = O(16)	1,468	Sb-O-S
S(1) - O(2) S(1) - O(3) S(1) - O(4)	1,411	S(3) = O(1) S(3) = O(10) S(3) = O(11)	1,420	S(5) = O(10) S(5) = O(17) S(5) = O(18)	1,403	S–O libre
S(1)=O(4) S(2)=O(4)	1,611	S(3)=O(11) S(4)=O(11)	1,647	S(3)=O(18) S(6)=O(18)	1,602	S-O-S
S(2) = O(5) S(2) = O(6)	1,432	S(4) = O(12) S(4) = O(13)	1,413	S(6) - O(19) S(6) - O(20)	1,429	S-O libre
S(2) = O(7)	1,464	S(4) = O(14)	1,504	S(6) = O(21)	1,484	Sb-O-S
O(1) - O(2)	2,421	O(8) - O(9)	2,403	O(15) - O(16)	2,399	
O(1) = O(3)	2,410	O(8) = O(10)	2,445	O(15) = O(17)	2,421	
O(1) = O(4) O(2) = O(3)	2,295	O(8) = O(11)	2,373	O(15) = O(18) O(16) = O(17)	2,434	
O(2) - O(4)	2,475	O(9) = O(11)	2,410	O(16) = O(18)	2,410	
O(3) - O(4)	2.449	O(10) - O(11)	2,454	O(17) - O(18)	2,402	
O(4) - O(5)	2,451	O(11) - O(12)	2,398	O(18) - O(19)	2,455	
O(4)-O(6)	2,440	O(11) - O(13)	2,465	O(18) - O(20)	2,366	
O(4) - O(7)	2,348	O(11)-O(14)	2,437	O(18)-O(21)	2,433	
O(5)–O(6)	2,412	O(12)-O(13)	2,471	O(19)-O(20)	2,439	
O(5)-O(7)	2,396	O(12)-O(14)	2,396	O(19)–O(21)	2,409	
O(6)–O(7)	2,412	O(13)-O(14)	2,430	O(20)–O(21)	2,390	
Valeur moyenne	2,411	Valeur moyenne	2,427	Valeur moyenne	2,421	
O(1)-S(1)-O(2)	112,8	O(8)-S(3)-O(9)	110,7	O(15)-S(5)-O(16)	111,1	
O(1) - S(1) - O(3)	112,3	O(8) - S(3) - O(10)	115,8	O(15) - S(5) - O(17)	114,9	O(t)-S-O(t)
O(2)-S(1)-O(3)	118,1	O(9)-S(3)-O(10)	113,7	O(16) - S(5) - O(17)	116,4)	
O(1)-S(1)-O(4)	94,7	O(8) - S(3) - O(11)	101,2	O(15)-S(5)-O(18)	103,6	$\cdots O(b) - S - O(t \cdots Sb)$
O(2) - S(1) - O(4)	108,8	O(9) - S(3) - O(11)	105,8	O(16) - S(5) - O(18)	105,8	O(b)-S-O(t)
0(3) - S(1) - O(4)	107,4	O(10) - S(3) - O(11)	108,3	O(16) - S(5) - O(18)	103,47	
O(4)-S(2)-O(5)	107,4	O(11)-S(4)-O(12)	102,9	O(18)-S(6)-O(19)	108,0)	
O(4)-S(2)-O(6)	107,3	O(11)-S(4)-O(13)	106,5	O(18) - S(6) - O(20)	103,0	O(b)-S-O(t)
O(4)-S(2)-O(6)	99,4	O(11)-S(4)-O(14)	101,2	O(18)-S(6)-O(21)	104,0) .	$\cdot \cdot O(b) - S - O(t \cdot \cdot \cdot Sb)$
O(5) - S(2) - O(6)	115,7	O(12)-S(4)-O(13)	121,1	O(19)-S(6)-O(20)	117,9	
O(5) - S(2) - O(7)	111,6	O(12) - S(4) - O(14)	110,4	O(19) - S(6) - O(21)	111,6	O(t)-S-O(t)
O(6) - S(2) - O(7)	113,7	O(12)-S(4)-O(14)	112,1	O(20) - S(6) - O(21)	110,97	
Sb(1)-O(1)-S(1) 147,1	Sb(1)-O(8)-S(3)	139,1	Sb(2) - O(15) - S(5)	142,3	
Sb(1)-O(5)-S(2) 152,1	Sb(2)-O(14)-S(4)	129,2	Sb(2) - O(21) - S(6)	132,5	
S(1)-O(4)-S(2)	126,5	S(3)-O(11)-S(4)	117,7	S(5)-O(18)-S(6)	120,1	
$S(1)\cdots S(2)$	2,888 (3) Å	$S(3) \cdots S(4)$	2,783 (3) Å	$S(5) \cdots S(6)$	2,818 (3) Å	

Discussion

Groupes S₂O₇

Donnay & Allman (1970) ont proposé des relations empiriques liant l'indice ou force de liaison (s) à la longueur (R) de celle-ci, de telle sorte que la somme des indices $(\sum s_i)$ des liaisons MO_n soit égale à la 'valence' ou charge de M; le même calcul peut être fait autour de l'oxygène, la somme des indices étant égale à 2; l'inconvénient de cette méthode est la prise en compte d'un rayon ionique maximum pour les ions, très difficilement calculables dans le cas de S⁶⁺ et Sb³⁺ en particulier.

Brown & Shannon (1973), dans une étude générale sur des oxydes, proposent une relation simple entre la longueur R et la force $s: s = (R/R_o)^{-N}$ où R_o et N sont des constantes, pour un type de liaison M-O, déterminées à partir de compilations de distances expérimentales.

Dans le cas de liaisons S-O, ces paramètres ont pour valeurs: $R_o = 1,622$ Å et N = 4,29.

Dans le cas d'un pont S-O-S symétrique, la force de chaque liaison est de 1 pour R = 1,622 Å, ce qui correspond à la valence 2 de l'oxygène. Dans un ion SO_4^{2-} , la 'valence' 6 du soufre est répartie sur les quatre liaisons S-O (1,47 Å), de sorte que chaque oxygène ait un indice de 1,5, ce qui implique qu'ils soient coordinés par des liaisons faibles à d'autres atomes.

Brown (1973) propose ensuite une méthode de calcul des angles O–S–O dans des polysulfates ou hydrogénosulfates prenant en compte un effet dû aux longueurs S–O et un effet de configuration, lié à la disposition d'un groupe SO₃ terminal vis-à-vis du plan défini par le pont S–O–S ou S–O–H. La stabilité des quatre oxygènes au sommet d'un tétraèdre régulier

Fig. 1. Projection de la structure sur le plan (010). L'entité chimique $[Sb_2(S_2O_7)_3]_2$ est seule représentée autour de l'origine de la maille qui est un centre de symétrie *I*. Les atomes numérotés correspondent aux coordonnées du Tableau 2. Les autres entités s'obtiennent par des translations des vecteurs *a*, *b*, *c*. La cohésion est assurée par des liaisons de van der Waals entre atomes d'oxygène.

implique des déplacements de l'atome de soufre, donc des angles O–S–O, en relations avec les longueurs. L'effet de configuration module les valeurs obtenues par le calcul précédent.

Dans le cas d'un groupe S_2O_7 en configuration normale (Fig. 2a), le premier effet lié aux longueurs (1,622 et 1,44 Å) conduit à des angles O(t)-S-O(t) de 104,4°, alors que les angles O(b)-S-O(t) sont de 114,6°. L'effet de configuration se traduit par un rapprochement des quatre liaisons S-O vers un pseudo-axe $\overline{4}$ situé dans le plan S-O-S, les valeurs des variations étant sur la Fig. 2(a). Cela entraîne, en particulier, un abaissement de 3,2° de l'angle O(t1)-S-O(b) qui est égal à 101,2°.

Dans le cas de la configuration de la Fig. 2(b), les variations angulaires sont plus faibles et l'on peut remarquer une augmentation de $2,6^{\circ}$ de l'angle O(b)-S-O(t3) que est dans le plan S-O-S.

Cette analyse de Brown (1973) peut être utilisée dans le cas de cette structure puisque l'examen du Tableau 3, indique, en particulier, une excellente distribution des distances O-O des tétraèdres SO₄ autour d'une valeur moyenne de 2,42 Å, l'écart-type calculé sur cette moyenne étant de 0,05. Dans ce disulfate d'antimoine, le groupe terminal SO₃ n'est pas symétrique, puisque l'un des trois oxygènes est lié à l'antimoine relativement fortement. Cette double fonction de cet oxygène (n° 1, 7, 8, 14, 15, 21) est donc responsable de la longueur S-O supérieure à celle des deux liaisons SO

Fig. 2. Configurations de groupements S_2O_7 . (a) Configuration normale, dite 'ouverte': l'atome O(t1) est dans le plan du pont S-O-S; l'axe z est un pseudo axe 4. (b) Configuration 'fermée': la rotation du groupe SO_3 terminal amène l'atome O(t3) dans le plan S-O-S et sur l'axe z (4) de la configuration normale (a).

des groupes SO₂ 'libres' [valeurs moyennes: S–O de SO₂ = 1,423 Å (s = 1,75); S–O(\cdots Sb) = 1,48 Å (s = 1,48)]. Nous allons considérer l'exemple de la valeur de l'angle O($t \cdots$ Sb)–S–O(b) qui est toujours faible, puisque la valeur moyenne est de 100,7° (valeurs extrêmes: 94,7, 104°).

Le calcul de cet angle par la formule de Brown (1973), en ne tenant compte que de l'influence des longueurs de liaison se fait par la formule:

$$\cos\theta = (R_1^2 + R_2^2 - P^2)/2R_1R_2$$

où R_1 et R_2 sont les deux distances S-O moyennes (1,618 et 1,48 Å) et *P* la longueur moyenne (2,42 Å) de O-O. On obtient ainsi un angle théorique de 102,6°.

Dans les deux premiers groupes S_2O_7 (I et II) qui sont des groupements 'ouverts' liant deux atomes Sb, l'angle observé est inférieur à cette valeur; dans la configuration normale (Fig. 2*a*), il s'agit de l'angle $O(t1\cdots$ Sb)-S-O(b) qui est inférieur de 3,2° par l'effet de configuration à cette valeur (soit: 99,4°). Si l'on omet la valeur de 94,7°, qui est un peu faible, les trois autres angles sont, compte-tenu des incertitudes, voisins de ce nombre. L'examen de la conformation de ces deux groupes montre que les conformations réelles sont voisines de cette configuration idéalisée.

Par contre, dans le groupe S_2O_7 (III) qui est lié à l'atome Sb(2) par les deux extrémités, l'angle $O(t \cdots Sb)-S-O(b)$ est voisin de 104°, donc supérieur à la valeur calculée (102,6°) à partir des longueurs S-O; la configuration de la Fig. 2(b) permet, en assimilant l'atome O(t3) à l'atome $O(t \cdots Sb)$, d'expliquer l'augmentation de cet angle liée à cette configuration (augmentation théorique: 2,6°). La configuration réelle de S_2O_7 (III), bidenté sur Sb(2), est proche de ce type [les deux angles dièdres $O(t \cdots Sb)-S-O(b)$ et S-O(b)-S sont voisins de 10°].

Les caractéristiques de ponts S–O–S figurant dans le Tableau 4 dans divers composés: Se₄HS₂O₇ (Brown *et al.*, 1971), NO₂HS₂O₇ (Steeman & MacGillavry, 1954), K₂S₂O₇ (Lynton & Truter, 1960), (NO₂)₂S₃O₁₀ (Cruickshank, 1964), $K_2S_5O_{16}$ (de Vries & Mijlhoff, 1969), S_3O_9 (McDonald & Cruickshank, 1967), indiquent que la valeur moyenne de 1,618 Å dans les trois groupes S_2O_7 de $Sb_2(S_2O_7)_3$ est tout-à-fait comparable aux longueurs S–O des autres composés; cette valeur, très proche de celle de Brown & Shannon (1973) pour un pont S–O–S (1,622 Å) dans lequel chaque lisiaon S–O a un indice de 1 confirme la validité des prévisions de ces auteurs.

La distance S–S est voisine de 2,83 Å et l'angle S–O–S proche de 121,4°, grandeurs comparables à celles des composés cités en référence dans le Tableau 4.

Coordination de Sb¹¹¹

De nombreuses études portent sur la coordination de Sb¹¹¹ en relation avec l'activité stéréochimique de la paire non liée E de Sb (Andersson, Aström, Galy & Meunier, 1973; Galy, Meunier, Andersson & Aström, 1975). Dans les composés oxygénés, cette paire Eoccupe un volume voisin de celui d'un ion O^{2-} (de 16 à 17 Å³), la structure pouvant ainsi être considérée à partir d'un empilement compact de paires et d'ions O²⁻. L'activité de la paire dans $Sb_2(S_2O_7)_3$ doit être semblable puisque le volume moyen ainsi calculé est de 17,03 Å³. Dans cette hypothèse, deux polyèdres de coordination sont à considérer: le tétraèdre SbO_3E et la bipyramide à base trigonale SbO_AE . Dans les deux cas, la distance Sb-E est voisine de 1,1 Å (Galy et al., 1975); l'oxyde Sb₄O₆ (Svensson, 1975) est un représentant du premier type (trois liaisons fortes de 2,00 Å) alors que SbPO₄ (Kindberger, 1970) est caractéristique du deuxième type; les considérations théoriques de Galy et al. (1975) permettent de prévoir dans ce cas un plan équatorial SbO_2E (deux liaisons Sb-O courtes 2,00 Å) et deux liaisons axiales (\sim 2,27 Å) faisant entre elles un angle voisin de 151°.

Les caractéristiques des deux polyèdres SbO_4E dans $Sb_2(S_2O_7)_3$ (Tableau 5) laissent aparaître trois liaisons

	Sb ₂ (S ₂ O ₇) ₃ Valeur moyenne des trois ponts S-O-S	K ₂ S ₂ O ₇	Se₄(HS₂O٦)2	(NO ₂) ₂ S ₃ O ₁₀	K 2S5O16	S ₃ O ₉ (cycle) Valeur moyenne des six liaisons S-O et des trois angles O-S-O
S–O	1,618 Å	1,645 Å	1,67 Å 1,59	1,72 Å 1,49 1,59 1,71	1,59 Å 1,67 1,51 1,83	1,620 Å
S-O-S	121,4°	124,2°	123°	122°	123° 124	121,5°
$S \cdots S$	2,83 Å	2,90 Å	2,86 Å	2,85 Å	2,87 Å 2,93 Å	2,824 Å

Tableau 4. Caractéristiques du pont S-O-S

fortes (entre 2,029 et 2,175 Å), néanmoins plus longues aue dans les oxydes Sb₄O₆ (Svensson, 1975), et Sb₂O₃ (Svensson, 1974), où elles sont voisines de 2,00 Å; les six atomes d'oxygène concernés sont les oxygènes terminaux $O(t \cdots Sb)$ des groupes S_2O_7 dont nous avons précédemment discuté. Il existe une quatrième liaison relativement plus faible (2,316 et 2,410 Å) qui permet de comparer cette coordination au modèle $SbO_{L}E$ puisqu'en particulier les liaisons 'axiales' font entre elles des angles voisins de 150°; il est à remarquer (Tableau 3) que les deux atomes O participant à ces quatrièmes liaisons O(9) et O(16) font partie des groupes 'SO, libres'; ces liaisons ont une influence sur les longueurs S-O adjacentes qui sont légèrement supérieures (~1,45 Å) aux autres liaisons S-O des groupes SO, (\sim 1,41 Å).

Le spectre de diffusion Raman de ce composé présente les trois raies caractéristiques S–O–S dans des sulfates, à savoir deux raies fortes à 735 cm⁻¹ (v_s S–O–S) et 345 cm⁻¹ (δ S–O–S) et une raie faible à 800 cm⁻¹ (v_{as} S–O–S); ce type d'attribution établi par Walrafen, Irish & Young (1962), a été confirmé depuis.

Tableau 5. Distances interatomiques (Å) et angles (°) dans les polyèdres SbO_4

Les indices correspondent à ceux donnés dans le Tableau 2. Les écarts-type figurent entre parenthèses.

Sb(1)		Sbo	(2)
Sb-O(1)	2,029 (4)	Sb-O(14)	2,071 (4) 2,115 (4) (a)
Sb-O(8)	2,188 (4)	Sb-O(21)	
Sb-O(7)	2,164 (4)	Sb-O(15)	$2,175 (4) \\ 2,316 (4) $ (b)
Sb-O(16)	2,410 (5)	Sb-O(9)	
O(1)-O(7)	2,816 (7)	$\begin{array}{c} O(9)-O(14)\\ O(9)-O(15)\\ O(9)-O(21)\\ O(14)-O(15)\\ O(14)-O(21)\\ O(15)-O(21)\\ O(15)-O(21) \end{array}$	2,774 (8)
O(1)-O(8)	2,751 (8)		4,323 (8)
O(1)-O(16)	3,088 (8)		2,724 (7)
O(7)-O(8)	2,767 (8)		2,712 (7)
O(7)-O(16)	4,420 (9)		2,903 (7)
O(8)-O(16)	2,692 (7)		2,808 (8)
O(1)-Sb-O(8)	81,3 (2)	O(21)-Sb-O(14)	87,8 (2) (<i>a</i>)
O(1)-Sb-O(7)	84,3 (2)	O(21)-Sb-O(15)	81,7 (2)
O(1)-Sb-O(16	87,7 (2)	O(21)-Sb-O(9)	75,7 (2)
O(7)-Sb-O(8)	79,0 (2)	O(9)-Sb-O(14)	78,2 (2)
O(7)-Sb-O(16	150,2 (2)	O(9)-Sb-O(15)	148,6 (2) (<i>b</i>)
O(8)-Sb-O(16	71,5 (2)	O(9)-Sb-O(14)	78,2 (2)

Observations: (a) Liaison équatoriale. (b) Liaision axiale.

La géométrie précise des groupes S_2O_7 dans ce cristal devrait permettre aux spectroscopistes d'affiner les champs de forces propres à ces groupes.

Nous remercions vivement MM Faure et Loiseleur du Laboratoire de Chimie Analytique II de Lyon I pour leur franche collaboration et Mme Thomas-David, Directrice du Centre de Diffractométrie Automatique de Lyon I, de nous avoir permis d'utiliser le diffractomètre automatique CAD-4. Les calculs ont été effectués sur ordinateur IRIS-50 du Centre de Calcul de Besançon à l'aide d'une bibliothèque de programmes collationnnés par M Théobald du laboratoire de Chimie-Physique de Besançon, que nous remercions vivement.

Références

- ANDERSSON, S., ASTRÖM, A., GALY, J. & MEUNIER, G. (1973). J. Solid State Chem. 6, 187–190.
- BOVIN, J.-O. (1976). Acta Cryst. B32, 1771-1776.
- BROWN, I. D. (1973). Acta Cryst. B29, 1979-1983.
- BROWN, I. D., CRUMP, D. S. & GILLESPIE, R. J. (1971). Inorg. Chem. 10, 2319–2323.
- BROWN, I. D. & SHANNON, R. D. (1973). Acta Cryst. A29, 266–282.
- CRUICKSHANK, D. W. J. (1964). Acta Cryst. 17, 684-685.
- DONNAY, G. & ALLMAN, R. (1970). Am. Mineral. 55, 1003– 1015.
- DOUGLADE, J., MERCIER, R. & VIVIER, H. (1978). Acta Cryst. B34, 3163-3168.
- GALY, J., MEUNIER, G., ANDERSSON, S. & ASTRÖM, A. (1975). J. Solid State Chem. 13, 142–159.
- International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press.
- KINDBERGER, B. (1970). Acta Chem. Scand. 24, 320-328.
- LYNTON, H. & TRUTER, M. R. (1960). J. Chem. Soc. pp. 5112–5118.
- McDonald, W. S. & Cruickshank, D. W. J. (1967). Acta Cryst. 22, 48–51.
- MERCIER, R., DOUGLADE, J. & BERNARD, J. (1976). Acta Cryst. B32, 2787-2791.
- Mercier, R., Douglade, J. & Théobald, F. (1975). Acta Cryst. B31, 2081–2085.
- STEEMAN, J. W. M. & MACGILLAVRY, C. H. (1954). Acta Cryst. 7, 402–404.
- Svensson, C. (1974). Acta Cryst. B30, 458–461.
- Svensson, C. (1975). Acta Cryst. B31, 2016-2018.
- VRIES, R. DE & MIJLHOFF, F. C. (1969). Acta Cryst. B25, 1696–1699.
- WALRAFEN, G. E., IRISH, D. E. & YOUNG, T. F. (1962). J. Chem. Phys. 37, 662–670.